

2

Simplex Methods

The main idea of primal cost improvement is to start with a feasible flow
vector x and to generate a sequence of other feasible flow vectors, each having
a smaller primal cost than its predecessor. The main idea is that if the current
flow vector is not optimal, an improved flow vector can be obtained by pushing
flow along a simple cycle C with negative cost, that is,

∑
(i,j)∈C+

aij −
∑

(i,j)∈C−

aij < 0,

where C+ and C− are the sets of forward and backward arcs of C, respectively
(see Prop. 2.1 in Section 1.2).

There are several methods for finding negative cost cycles, but the most
successful in practice are specialized versions of the simplex method for linear
programming. This chapter focuses on methods of this type.

Simplex methods are not only useful for algorithmic solution of the prob-
lem; they also provide constructive proofs of some important analytical re-
sults. Chief among these are duality theorems asserting the equality of the
primal and the dual optimal values, and the existence of optimal primal and
dual solutions which are integer if the problem data are integer (see Prop. 2.3
in Section 2.2 and Prop. 3.2 in Section 2.3).

91

92 Simplex Methods Chap. 2

2.1 MAIN IDEAS IN SIMPLEX METHODS

To simplify the presentation, we first consider the version of the minimum
cost flow problem with only nonnegativity constraints on the flows:

minimize
∑

(i,j)∈A
aijxij (MCF–N)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (1.1)

0 ≤ xij, ∀ (i, j) ∈ A, (1.2)

where aij , and si are given scalars.
We saw in Section 1.1.3 that the general minimum cost flow problem

with upper and lower bounds on the arc flows can be converted to one with
nonnegativity constraints. Thus, once we develop the main method for the
simpler problem above, its extension to the more general problem will be
straightforward.

The most important difference between the minimum cost flow problem
with nonnegativity constraints and the one with upper and lower bounds is
that the former can be unbounded . By this we mean that feasible flows may
take arbitrarily large values, while the corresponding cost takes arbitrarily
small (i.e., large negative) values. In particular, the problem is unbounded if it
is feasible and there exists a simple forward cycle with negative cost , since then
we can reduce the cost to arbitrarily large negative values by adding arbitrarily
large flow along the negative cost cycle to any feasible flow vector. [In fact,
we have seen an instance of this result in connection with the shortest path
problem; cf. the corresponding minimum cost flow problem (3.3) in Section
1.3.] The converse is also true: if the problem is unbounded, there must exist
a simple forward cycle with negative cost . This follows from Prop. 3.5 in
Section 1.3, which implies that if the cost of every simple forward cycle is
nonnegative, then the cost function of the problem is bounded from below by
some constant.

Spanning Trees and Basic Flow Vectors

The main idea of the simplex method is to generate negative cost cycles by
using a spanning tree of the given graph. Recall from Section 1.1 that a tree
is an acyclic connected graph, and that a spanning tree of a given graph is
a subgraph that is a tree and includes all nodes of the given graph. A leaf
node of a tree is defined to be a node with a single incident arc. Figure 1.1
illustrates a spanning tree and a leaf node. The following lemma proves some
important properties.

Simple cycle closed by
adding arc (i,j) to T

A leaf node

i

j

Sec. 2.1 Main Ideas in Simplex Methods 93

Figure 1.1 Illustration of a spanning tree T . Note that that there is a

unique simple path of T connecting any pair of nodes. Furthermore, the addition

of any arc to T [arc (i, j) in the figure] creates a unique simple cycle in which

(i, j) is a forward arc.

Lemma 1.1: Let T be a subgraph of a graph with N nodes.

(a) If T is acyclic and has at least one arc, then it must have at least one
leaf node.

(b) T is a spanning tree if and only if it is connected and has N nodes and
N − 1 arcs.

(c) If T is a tree, for any two nodes i and j of T there is a unique simple
path of T starting at i and ending at j. Furthermore, any arc e that is
not in T , when added to T , creates a unique simple cycle in which e is
a forward arc.

(d) If T is a tree and an arc (i, j) of T is deleted, the remaining arcs of T
form two disjoint trees, one containing i and the other containing j.

Proof: (a) Choose a node n1 of T with at least one incident arc e1 and let
n2 be the opposite node of that arc. If n2 is a leaf node, the result is proved;
else choose an arc e2 �= e1 that is incident to n2, and let n3 be the opposite
end node. If n3 is a leaf node, the result is proved; else continue similarly.
Eventually a leaf node will be found, for otherwise some node will be repeated
in the sequence, which is impossible since T is acyclic.

(b) Let T be a spanning tree. Then T has N nodes, and since it is connected
and acyclic, it must have a leaf node n1. (We assume without loss of generality
that N ≥ 2.) Delete n1 and its unique incident arc from T , thereby obtaining

94 Simplex Methods Chap. 2

a connected graph T1, which has N − 1 nodes and is acyclic. Repeat the
process with T1 in place of T , obtaining T2, T3, and so on. After N − 1 steps
and N − 1 arc deletions, we will obtain TN−1, which consists of a single node.
This proves that T has N − 1 arcs.

Suppose now that T is connected and has N nodes and N − 1 arcs. If T
had a simple cycle, by deleting any arc of the cycle, we would obtain a graph T1

that would have N−2 arcs and would still be connected. Continuing similarly
if necessary, we obtain for some k ≥ 1 a graph Tk, which has N−k−1 arcs, and
is connected and acyclic (i.e., it is a spanning tree). This is a contradiction,
because we proved earlier that a spanning tree has exacly N − 1 arcs. Hence,
T has no simple cycle and must be a spanning tree.

(c) There is at least one simple path starting at a node i and ending at a
node j because T is connected. If there were a second path starting at i and
ending at j, by reversing this path so that it starts at j and ends at i, and by
concatenating it to the first path, we would form a cycle. It can be seen that
this cycle must contain a simple cycle, since otherwise the two paths would
be identical. This contradicts the hypothesis that T is a tree.

If arc e is added to T , it will form a simple cycle together with any
simple path that lies in T and connects its end nodes. Since there is only
one such path, it follows that e, together with the arcs of T , forms a unique
simple cycle in which e is a forward arc.

(d) It can be seen that removal of a single arc from any connected graph either
leaves the graph connected or else creates exactly two connected components.
The unique simple path of T connecting i to j consists of arc (i, j); with the
removal of this arc, no path connecting i to j remains, and the graph cannot
stay connected. Hence, removal of (i, j) must create exactly two connected
components, which must be trees since, being subgraphs of T , they must be
acyclic. Q.E.D.

Suppose that we have a feasible problem and we are given a spanning
tree T . A key property for our purposes is that there is a flow vector x,
satisfying the conservation of flow constraints (1.1), with the property that
only arcs of T can have a nonzero flow. Such a flow vector is called basic and
is uniquely determined by T , as the following proposition shows.

Proposition 1.1: Assume that
∑

i∈N si = 0. Then, for any spanning
tree T , there exists a unique flow vector x that satisfies the conservation of
flow constraints (1.1) and is such that all arcs not in T have zero flow. In
particular, if an arc (i, j) of T separates T into two components Ti and Tj ,
containing i and j respectively, we have

xij =
∑
n∈Ti

sn.

Sec. 2.1 Main Ideas in Simplex Methods 95

Proof: To show uniqueness, note that for any flow vector x and arc (i, j) ∈ T
the flux across the cut [Ti,N − Ti] is equal to the sum of divergences of the
nodes of Ti [see Eq. (2.5) in Section 1.2.2]. Thus, if x satisfies the conservation
of flow constraints, the flux across the cut must be

∑
n∈Ti

sn. If in addition
all arcs of the cut carry zero flow except for (i, j), this flux is just xij , so we
must have

xij =
{ ∑

n∈Ti
sn if (i, j) ∈ T

0 if (i, j) /∈ T .

Thus, if a flow vector has the required properties, it must be equal to the
vector x defined by the preceding formula.

To show existence, i.e. that the flow vector x, defined by the preceding
formula, satisfies the conservation of flow constraints, we use a constructive
proof based on the algorithm of Fig. 1.2. (An alternative algorithm is outlined
in Exercise 1.4.) Q.E.D.

Note that a basic flow vector need not be feasible; some of the arc flows
may be negative, violating the lower bound constraints (see the example of
Fig. 1.2). If the corresponding basic flow vector is feasible, the spanning tree
will be called (with slight abuse of terminology) a feasible tree.

Overview of the Simplex Method

The simplex method starts with a feasible tree and proceeds in iterations,
generating another feasible tree and a corresponding feasible basic flow vector
at each iteration. The cost of each basic flow vector is no worse than the
cost of its predecessor. At each iteration (also called a pivot in the standard
terminology of linear programming), the method operates roughly as follows:

(a) It uses a convenient method to add one arc to the tree so as to generate
a simple cycle with negative cost.

(b) It pushes along the cycle as much flow as possible without violating
feasibility.

(c) It discards one arc of the cycle, thereby obtaining another feasible tree
to be used at the next iteration.

Thus, each tree T in the sequence generated by the simplex method
differs from its predecessor T by two arcs: the out-arc e, which belongs to T
but not to T , and the in-arc e, which belongs to T but not to T ; see Fig. 1.3.
We will use the notation

T = T + e − e

to express this relation. The arc e when added to T closes a unique simple
cycle in which e is a forward arc. This is the cycle along which we try to push

1 2

3

4

5

1

- 2

1

- 1

s = 1 1 s = - 22

s = 33

s = - 14

s = - 15

Component tree T2

Component tree T3

96 Simplex Methods Chap. 2

Iteration # Leaf Node Selected Arc Flow Computed

1 1 x12 = 1

2 5 x53 = −1

3 3 x23 = −2

4 2 x24 = 1

Figure 1.2 Method for constructing the flow vector corresponding to T ,

starting from the arc incident to some leaf node and proceeding “inward.” The

algorithm maintains a tree R, a flow vector x, and scalars w1, . . . , wN . Upon

termination, x is the desired flow vector. Initially, R = T , x = 0, and wi = si for

all i ∈ N .

Step 1: Choose a leaf node i ∈ R. If (i, j) is the unique incident arc of i, set

xij := wi, wj := wj + wi;

if (j, i) is the unique incident arc of i, set

xji := −wi, wj := wj − wi.

Step 2: Delete i and its incident arc from R. If R now consists of a single node,

terminate; else, go to Step 1.

We now show that if
∑

n∈N sn = 0, the flow vector thus constructed satisfies

the conservation of flow equations. Consider the typical iteration where the leaf

node i of R is selected in Step 1. Suppose that (i, j) is the unique incident

arc of R [the proof is similar if (j, i) is the incident arc]. Then just before this

iteration, wi is equal by construction to si−
∑

{k �=j|(i,k)∈A} xik +
∑

{k|(k,i)∈A} xki, so

by setting xij to wi, the conservation of flow constraint is satisfied at node i. Upon

termination, it is seen that for the last node i of R, wi is equal to both
∑

n∈N sn

and si −
∑

{k|(i,k)∈A} xik +
∑

{k|(k,i)∈A} xki. Since
∑

n∈N sn = 0, the conservation

of flow constraint is satisfied at this last node as well.

Tree T together with in-arc e

Out-Arc eCycle C

In-Arc e

Tree T = T + e – e

Sec. 2.1 Main Ideas in Simplex Methods 97

Figure 1.3 Successive trees T and T generated by the simplex method.

flow. (By convention, we require that the orientation of the cycle is the same
as the orientation of the arc e.)

Leaving aside for the moment the issue of how to select an initial feasible
tree, the main questions now are:

(1) How to select the in-arc so as to close a cycle with negative cost or else
detect that the current flow is optimal.

(2) How to select the out-arc so as to obtain a new feasible tree and associ-
ated flow vector.

(3) How to ensure that the method makes progress, eventually improving
the primal cost. (The problem here is that even if a negative cost cycle
is known, it may not be possible to push a positive amount of flow along
the cycle because some backward arc on the cycle has zero flow. Thus,
the flow vector may not change and the primal cost may not decrease
strictly at any one pivot; in linear programming terminology, such a
pivot is known as degenerate. Having to deal with degeneracy is the
price for simplifying the search for a negative cost cycle.)

We take up these questions in sequence.

2.1.1 Using Prices to Obtain the In-Arc

Despite the fact that the simplex method is a primal cost improvement algo-
rithm, it makes essential use of price vectors and duality ideas. In particular,
the complementary slackness (CS) conditions

pi − pj ≤ aij, ∀ (i, j) ∈ A, (1.3a)

98 Simplex Methods Chap. 2

pi − pj = aij, for all (i, j) ∈ A with 0 < xij (1.3b)

[see Eqs. (2.11c) and (2.11d) in Section 1.2] will play an important role. If
x is feasible and together with p satisfies these CS conditions, then x is an
optimal solution of the problem (MCF-N) and p is an optimal solution of its
dual problem

maximize
∑
i∈N

sipi

subject to pi − pj ≤ aij, ∀ (i, j) ∈ A;

the proof of this closely parallels the proof of Prop. 2.4 in Section 1.2 and is
outlined in Exercise 2.11 in Section 1.2.

Along with a feasible tree T , the simplex method maintains a price vector
p = (p1, . . . , pN) such that

pi − pj = aij, ∀ (i, j) ∈ T.

This is obtained as follows: Fix a node r, called the root of the tree, and set
pr to some arbitrary scalar value; for any node i, let Pi be the unique simple
path of T starting at the root node r and ending at i, and define pi by

pi = pr −
∑

(m,n)∈P+
i

amn +
∑

(m,n)∈P−
i

amn, (1.4)

where P+
i and P−

i are the sets of forward and backward arcs of Pi, respectively.
To see that with this definition of pi we have pi − pj = aij for all (i, j) ∈ T ,
write Eq. (1.4) for nodes i and j, subtract the two equations, and note that
the paths Pi and Pj differ by just the arc (i, j).

For an equivalent construction method, select pr arbitrarily, set the
prices of the outward neighbors j of r with (r, j) ∈ T to pj = pr − arj and
the prices of the inward neighbors j of r with (j, r) ∈ T to pj = pr + ajr, and
then repeat the process with the neighbors j replacing r. Figure 1.4 gives an
example.

It can be seen from Eq. (1.4), that for each pair of nodes i and j, the
price difference (pi − pj) is independent of the arbitrarily chosen root node
price pr; write Eq. (1.4) for node i and for node j, and subtract. Therefore,
for each arc (i, j), the scalar

rij = aij + pj − pi, (1.5)

called the reduced cost of the arc, is uniquely defined by the spanning tree T .
By the definition of p, we have

rij = 0, ∀ (i, j) ∈ T,

13

2

5

4

6

7

p = -1

p = 0

p = 0

Root
Cost = 1

Cost = 2

Cost = -2

Cost =1

Cost = -1

Cost = -1

1

2

p = 23

p = 24

p = 1
5

6

p = 27

Sec. 2.1 Main Ideas in Simplex Methods 99

Figure 1.4 Illustration of the prices associated with a spanning tree. The

root is chosen to be node 1, and its price is arbitrarily chosen to be 0. The other

node prices are then uniquely determined by the requirement pi − pj = aij for all

arcs (i, j) of the spanning tree.

so if in addition we have

rij ≥ 0, ∀ (i, j) /∈ T,

then the pair (x, p) satisfies the CS conditions (1.3a) and (1.3b). It then
follows from Prop. 2.5 of Section 1.2 (more precisely, from the version of that
proposition that applies to the problem with only nonnegativity constraints)
that x is an optimal primal solution and p is an optimal dual solution.

If on the other hand, we have

ri j < 0 (1.6)

for some arc e = (i, j) not in T , then we claim that the unique simple cycle
C formed by T and the arc (i, j) has negative cost. Indeed, the cost of C can
be written in terms of the reduced costs of its arcs as

∑
(i,j)∈C+

aij −
∑

(i,j)∈C−
aij =

∑
(i,j)∈C+

(
aij + pj − pi

)
−

∑
(i,j)∈C−

(
aij + pj − pi

)

=
∑

(i,j)∈C+

rij −
∑

(i,j)∈C−
rij .

(1.7)

Since rij = 0 for all (i, j) ∈ T [see Eq. (1.5)], and e is a forward arc of C by
convention, we have

Cost of C = ri j ,

Reduced Cost = Cycle Cost = -3

Cost = 1

Cost = -1

Cost = 0

Cost = 1

Cost = 1

Cost = 1

Cost = -2

Price = 3 Price = -1

Price = 0

Price = 0Price = 4

Price = 2

Price = 1

In-Arc

100 Simplex Methods Chap. 2

Figure 1.5 Obtaining a negative cost cycle in the simplex method. All

arcs of the cycle have zero reduced cost, so the reduced cost of the in-arc is also

the cost of the cycle, based on the calculation of Eq. (1.7). Thus, if the in-arc is

chosen to have negative reduced cost, the cost of the cycle is also negative.

which is negative by Eq. (1.6); see Fig. 1.5.
The role of the price vector p associated with a feasible tree now becomes

clear. By checking the sign of the reduced cost

rij = aij + pj − pi,

of all arcs (i, j) not in T , we will either verify optimality if rij is nonnegative
for all (i, j), or else we will obtain a negative cost cycle by discovering an arc
(i, j) for which rij is negative. The latter arc is the in-arc that will enter the
tree of the next iteration.

There is a great deal of flexibility for selecting the in-arc. For example,
one may search for an in-arc with most negative reduced cost; this rule requires
a lot of computation – a comparison of rij for all arcs (i, j) not in the current
tree. A simpler alternative is to search the list of arcs not in the tree and to
select the first arc with negative reduced cost. Most practical simplex codes
use an intermediate strategy. They maintain a candidate list of arcs, and
at each iteration they search through this list for an arc with most negative
reduced cost; in the process, arcs with nonnegative reduced cost are deleted
from the list. If no arc in the candidate list has a negative reduced cost,
a new candidate list is constructed. One way to do this is to scan the full
arc list and enter in the candidate list all arcs with negative reduced cost,
up to the point where the candidate list reaches a maximum size, which is

Sec. 2.1 Main Ideas in Simplex Methods 101

chosen heuristically. This procedure can also be used to construct the initial
candidate list.

2.1.2 Obtaining the Out-Arc

Let T be a feasible tree generated by the simplex method with corresponding
flow vector x and price vector p which are nonoptimal. Suppose that we have
chosen the in-arc e and we have obtained the corresponding negative cost
cycle C formed by T and e. There are two possibilities:

(a) All arcs of C are oriented like e, that is, C− is empty. Then C is a for-
ward cycle with negative cost, indicating that the problem is unbounded.
Indeed, since C− is empty, we can increase the flows of the arcs of C
by an arbitrarily large common increment, while maintaining feasibility
of x. The primal cost function changes by an amount equal to the cost
of C for each unit flow change along C. Since C has negative cost, we
see that the primal cost can be decreased to arbitrarily small (i.e. large
negative) values.

(b) The set C− of arcs of C with orientation opposite to that of e is nonempty.
Then

δ = min
(i,j)∈C−

xij (1.8)

is the maximum increment by which the flow of all arcs of C+ can be
increased and the flow of all arcs of C− can be decreased, while still
maintaining feasibility. The simplex method computes δ and changes
the flow vector from x to x, where

xij =

⎧⎨
⎩

xij if (i, j) /∈ C
xij + δ if (i, j) ∈ C+

xij − δ if (i, j) ∈ C−.
(1.9)

Any arc e = (i, j) ∈ C− that attains the minimum in the equation
δ = min(i,j)∈C− xij satisfies xij = 0 and can serve as the out-arc; see Fig.
1.6. (A more specific rule for selecting the out-arc will be given later.)
The new tree is

T = T + e − e (1.10)

and its associated basic flow vector is x, given by Eq. (1.9).

Figures 1.7 and 1.8 illustrate the simplex method for some simple ex-
amples.

Note that the price vector p associated with the new tree T can be
conveniently obtained from p as follows: Let e = (i, j) be the in-arc and let
e be the out-arc. If we remove e from T we obtain two trees, Ti and Tj ,

Candidate Out-Arc

In-Arc

Candidate Out-Arc

Flow = 1

Flow = 2

Flow = 1Flow = 1

Flow = 0

Flow = 3

Flow = 2

Flow = 2

Flow = 2

102 Simplex Methods Chap. 2

Figure 1.6 Choosing the out-arc in the simplex method. The in-arc (4, 5)

closes a cycle C. The arcs of C− are (3,2), (7,6) and (1,7), and define the flow

increment δ = min(i,j)∈C− xij . Out of these arcs, the ones attaining the minimum

are the candidates for out-arc, as shown.

containing the nodes i and j, respectively; see Fig. 1.9. Then it is seen from
the definition (1.4) that a price vector p associated with T is given by

pi =
{

pi if i ∈ Ti

pi − ri j if i ∈ Tj ,
(1.11)

where
ri j = ai j + pj − p i

is the reduced cost cost of the in-arc (i, j). Thus, to update the price vector,
one needs to increase the prices of the nodes in Tj by the common increment
(−ri j). We may also use any other price vector, obtained by adding the same
constant to all the prices pi defined above; it will simply correspond to a
different price for the root node. The formula

pi =
{

pi + ri j if i ∈ Ti

pi if i ∈ Tj,
(1.12)

involving a decrease of the prices of the nodes in Ti, is useful in some imple-
mentations.

Note that if the flow increment δ = min(i,j)∈C− xij [cf. Eq. (1.8)] is pos-
itive, then the cost corresponding to x will be strictly smaller than the cost
corresponding to x (by δ times the cost of the cycle C). Thus, when δ > 0,

(a) (b)

1 1 1 1
cost = 1

cost = 0 cost = 0

flow = 1

flow = 0

1

2

3 1

2

3

p = -1
3

p = -1
2

p = 0
1

(c)

1 1

flow =1 flow = 1

1

2

3

p = 0
1 3p = 0

2
p = 0

reduced cost = 1

In - arc
reduced cost = -1

p = 1
3

p = 1
2

(b)

1
flow = 1

flow = 0

1

2

3

p = 0
1

In - arc
reduced cost = -1

cost = -1

(a)

1 1

cost = 0 cost = 0

1

2

3 1

Sec. 2.1 Main Ideas in Simplex Methods 103

Figure 1.7 Illustration of the simplex method for the problem described in

figure (a). The starting tree consists of arcs (1, 3) and (2, 3) and the corresponding

flows and prices are as shown in figure (b). Arc (1, 2) has negative reduced cost

and is thus eligible to be an in-arc. Arc (1, 3) is the only arc eligible to be the

out-arc. The new tree is shown in figure (c). The corresponding flow is optimal

because the reduced cost of arc (1, 3) is positive.

Figure 1.8 Illustration of the simplex method for the problem described in

figure (a); this is an unbounded problem because the cycle (1, 3, 2, 1) has negative

cost. The starting tree consists of arcs (1, 3) and (2, 3) and the corresponding

flows and prices are as shown in figure (b). Arc (1, 2) has negative reduced cost

and is thus eligible to be an in-arc. However, all the arcs of the corresponding

cycle have the same orientation, so the problem is declared to be unbounded.

(a) (b)

Out-Arc e

In-Arc (i, j)
_ _

_
i

_
j

T
i
_

T_
j

Root

Out-Arc e

In-Arc (i, j)
_ _

_
i

Ti
_ T_

j

Root

_
j

104 Simplex Methods Chap. 2

Figure 1.9 Component trees T
i
and T

j
, obtained by deleting the out-arc

e from T , where e = (i, j) is the in-arc; these are the components that contain

i and j, respectively. Depending on the position of the out-arc e, the root node

may be contained in T
i
as in figure (a), or in T

j
as in figure (b).

the simplex method will never reproduce x and the corresponding tree T in
future iterations.

On the other hand, if δ = 0, then x = x, and the pivot is degenerate.
In this case there is no guarantee that the tree T will not be repeated after
several degenerate iterations with no interim improvement in the primal cost.
We thus need to provide for a mechanism that precludes this from happening.

2.1.3 Dealing with Degeneracy

Suppose that the feasible trees generated by the simplex method are all dis-
tinct (which is true in particular when all pivots are nondegenerate). Then,
since the number of distinct feasible trees is finite, the method will eventually
terminate. Upon termination, there are two possibilities:

(a) The final flow and price vectors are primal and dual optimal, respec-
tively.

(b) The problem is shown to be unbounded because at the final iteration,
the cycle closed by the current tree and the in-arc e has no arc with
orientation opposite to that of e.

Root

(b) Strongly Feasible

Flow > 0

Flow > 0

Flow > 0

Flow > 0

Flow > 0

Flow > 0

Flow > 0

Flow > 0 Flow = 0
Oriented away
from the root

Root

Flow > 0

(a) Not Strongly Feasible

Flow > 0

Flow > 0

Flow > 0

Flow > 0

Flow > 0Flow > 0

Flow > 0

Flow = 0
Oriented towards
the root

Sec. 2.1 Main Ideas in Simplex Methods 105

Unfortunately, if the tree sequence is not generated with some care, there
is no guarantee that a tree will not be repeated an infinite number of times.
To rule out this possibility, thereby ensuring termination of the method, we
will use feasible trees with a special property called strong feasibility . We
will make sure that the initial tree has this property, and we will choose the
out-arc in a way that the property is maintained by the algorithm.

Let us fix the root node r used to compute the price vectors associated
with feasible trees. Given a feasible tree T , we say that arc (i, j) ∈ T is
oriented away from the root if the unique simple path of T from the root to j
passes through i. A feasible tree T with corresponding flow vector x is said to
be strongly feasible if every arc (i, j) of T with xij = 0 is oriented away from
the root. Figure 1.10 illustrates strongly feasible trees.

Figure 1.10 Illustration of a strongly feasible tree. The tree in (a) is not

strongly feasible because the arc with zero flow on the tree is not oriented away

from the root. The tree in (b) is strongly feasible. Note that these two trees are

obtained from the strongly feasible tree in Fig. 1.6 by choosing a different out-arc.

The following proposition motivates the use of strongly feasible trees.

Proposition 1.2: If the feasible trees generated by the simplex method
are all strongly feasible, then these trees are distinct.

Proof: With each feasible tree T , with corresponding basic feasible vector
x and price vector p, we associate the two scalars

c(T) =
∑

(i,j)∈A
aijxij (1.13)

w(T) =
∑
i∈N

(
pr − pi

)
, (1.14)

106 Simplex Methods Chap. 2

where r is the root node. [The price differences pr−pi are uniquely determined
by T according to

pr − pi =
∑

(m,n)∈P+
i

amn −
∑

(m,n)∈P−
i

amn

[see Eq. (1.4)], so w(T) is uniquely determined by T . Note that, w(T) may
be viewed as the “aggregate length” of T ; it is the sum of the lengths of the
paths Pi from the root to the nodes i along the tree T , where the length of an
arc (m, n) is amn or −amn depending on whether (m, n) is or is not oriented
away from the root, respectively.]

We will show that if T and T = T +e−e are two successive feasible trees
generated by the simplex method, then either c(T) < c(T) or else c(T) = c(T)
and w(T) < w(T). This proves that no tree can be repeated.

Indeed, if the pivot that generates T from T is nondegenerate, we have
c(T) < c(T), and if it is degenerate we have c(T) = c(T). In the former case
the result is proved, so assume the latter case holds, and let e = (i, j) be
the in-arc. Then after the pivot, e still has zero flow, and since T is strongly
feasible, e must be oriented away from the root node r. This implies that r
belongs to the subtree Ti, and by Eq. (1.11) we have

w(T) = w(T) + |Tj |ri j , (1.15)

where ri j is the reduced cost of e, and |Tj | is the number of nodes in the
subtree Tj . Since ri j < 0, it follows that w(T) < w(T). Q.E.D.

The next proposition shows how to select the out-arc in a simplex iter-
ation so as to maintain strong feasibility of the generated trees.

Proposition 1.3: Let T be a strongly feasible tree generated by the simplex
method, let e = (i, j) be the in-arc, let C be the cycle formed by T and e,
suppose that C− is nonempty, let δ = min(i,j)∈C− xij , and let Ĉ be the set of
candidate out-arcs, that is, the set

Ĉ = {(i, j) ∈ C− | xij = δ}.

Define the join of C as the first node of C that lies on the unique simple path
of T that starts from the root and ends at i (see Fig. 1.11). Suppose that the
out-arc e is chosen to be the arc of Ĉ encountered first as C is traversed in the
forward direction (the direction of e) starting from the join node. Then the
next tree T = T + e− e generated by the simplex method is strongly feasible.

Proof: Since the arcs of T which are not in C will not change their flow
or orientation relative to the root, to check strong feasibility of T , we need
only be concerned with the arcs of C + e − e for which xij = 0. These will

Flow = 1

Flow = 2 Flow = 3

Candidate Out-Arc
Flow = 0

First Encountered
Candidate Out-Arc

Join

j
_

i
_

(b) Degenerate Pivot

Flow = 0 Flow = 0

In-Arc e
_

C

First Encountered
Candidate Out-Arc

Flow = 1

Flow = 2 Flow = 3

Flow = 2

Candidate Out-Arc
Flow = 2

Candidate Out - Arc

Join

j
_

In-Arc e
_

Flow = 0

(a) Nondegenerate Pivot

C

i
_

Sec. 2.1 Main Ideas in Simplex Methods 107

be the arcs of Ĉ − e and possibly arc e (in the case δ = 0). By choosing e to
be the first encountered arc of Ĉ, all of the arcs of Ĉ − e will be encountered
after e, and following the pivot, they will be oriented away from the join and
therefore also from the root. If δ = 0, the arcs (i, j) of Ĉ satisfy xij = 0, so
by strong feasibility of T , all of them, including e, must be encountered after
e as C is traversed in the direction of e starting from the join. Therefore, e
will also be oriented away from the root following the pivot. Q.E.D.

Figure 1.11 Maintaining a strongly feasible tree in the simplex method.

Suppose that the in-arc e = (i, j) is added to a strongly feasible T , closing the

cycle C. Let Ĉ be the set of candidates for out-arc (the arcs of C− attaining the

minimum in δ = min(i,j)∈C− xij), and let e be the out-arc. The arcs of T with

zero flow will be the arcs of Ĉ − e together with e if the pivot is degenerate. By

choosing as out-arc the first encountered arc of Ĉ as C is traversed in the direction

of e starting from the join, all of these arcs will be oriented away from the join

and also from the root, so strong feasibility is maintained. Note that if the pivot

is degenerate as in (b), then all arcs of Ĉ will be encountered after e (by strong

feasibility of T), so the out-arc e must be encountered after e. Thus, the in-arc e

will be oriented away from the root in the case of a degenerate pivot, as required

for strong feasibility of T .

E X E R C I S E S

Exercise 1.1

Consider the tree of Fig. 1.11(a).

1

2

3

4

2

3 2

3

108 Simplex Methods Chap. 2

(a) Suppose that the in-arc is (j, i) [instead of (i, j)]. Which arc should be

the out-arc?

(b) Suppose that the in-arc is the arc starting at the join and ending at j

[instead of (i, j)]. Which arc should be the out-arc in order to preserve

strong feasibility of the tree?

Exercise 1.2

Consider the minimum cost flow problem with nonnegativity constraints given

in Fig. 1.12 (supplies are shown next to the nodes, arc costs are immaterial).

Find all basic flow vectors and their associated trees. Specify which of these

are feasible and which are strongly feasible (the root node is node 1).

Figure 1.12 Graph for Exercise 1.2.

Exercise 1.3

Consider a feasible minimum cost flow problem such that the corresponding

graph is connected. Suppose we are given a feasible flow vector x. Construct

an algorithm that suitably modifies x to obtain a basic feasible flow vector

and an associated spanning tree. Hint: For a feasible flow vector x there are

two possibilities: (1) The subgraph S consisting of the set of arcs

Ax = {(i, j) ∈ A | xij > 0}

and the corresponding set of incident nodes is acyclic, in which case show that

x is basic. (2) The subgraph S is not acyclic, in which case show how to

construct a feasible flow vector x′ differing from x by a simple cycle flow, and

for which the arc set Ax′ has at least one arc less than the set Ax.

Sec. 2.2 The Basic Simplex Algorithm 109

Exercise 1.4

Consider the following algorithm that tries to construct a flow vector that

has a given divergence vector s, and is zero on arcs which are not in a given

spanning tree T . For any vector x, define the surplus of each node i by

gi =
∑

{j|(j,i)∈A}

xji −
∑

{j|(i,j)∈A}

xij + si.

The algorithm is initialized with x = 0. The typical iteration starts with a

flow vector x and produces another flow vector x that differs from x along

a simple path consisting of arcs of T . It operates as follows: a node i with

gi > 0 and a node j with gj < 0 are selected, and the unique path Pij that

starts at i, ends at j, and has arcs in T is constructed (if no such nodes i and

j can be found the algorithm stops). Then the flow of the forward arcs of

Pij are increased by δ and the flow of the backward arcs of Pij are decreased

by δ, where δ = min{gi,−gj}. Show that the algorithm terminates in a finite

number of iterations, and that upon termination, we have gi = 0 for all i if

and only if
∑

i∈N si = 0. Hint : Show that all the nodes with zero surplus with

respect to x also have zero surplus with respect to x. Furthermore, at least

one node with nonzero surplus with respect to x has zero surplus with respect

to x.

Exercise 1.5

Consider a transportation problem involving the set of sources S and the set

of sinks T (cf. Example 1.3 in Section 1.1). Suppose that there is no strict

subset S of S and strict subset T of T such that

∑
i∈S

αi =
∑
j∈T

βj .

Show that for every feasible tree, the corresponding flow of every arc of the tree

is positive. Conclude that if a feasible initial tree can be found, degeneracy

never arises in the simplex method.

2.2 THE BASIC SIMPLEX ALGORITHM

We are now ready to state formally the simplex algorithm based on the ideas
of the previous section.

110 Simplex Methods Chap. 2

At the beginning of each iteration we have a strongly feasible tree T and
an associated basic flow vector x such that

xij = 0, ∀ (i, j) /∈ T (2.1)

and a price vector p such that

rij = aij + pj − pi = 0, ∀ (i, j) ∈ T. (2.2)

The iteration has three possible outcomes:

(a) We will verify that x and p are primal and dual optimal, respectively.

(b) We will determine that the problem is unbounded.

(c) We will obtain by the method of Prop. 1.3 a strongly feasible tree T =
T + e − e, differing from T by the in-arc e and the out-arc e.

Typical Simplex Iteration

Select an in-arc e = (i, j) /∈ T such that

ri j = ai j + p j − p i < 0.

(If no such arc can be found, terminate; x is primal-optimal and p is dual-

optimal.) Consider the cycle C formed by T and e. If C− is empty, terminate

(the problem is unbounded); else, obtain the out-arc e ∈ C− as described in

Prop. 1.3.

2.2.1 Justification of the Simplex Method

We now collect the facts already proved into a proposition that also deals with
the integrality of the solutions obtained.

Proposition 2.1: Suppose that the simplex method is applied to the min-
imum cost flow problem with the nonnegativity constraints, starting with a
strongly feasible tree.

(a) If the problem is not unbounded, the method terminates with an optimal
primal solution x and an optimal dual solution p, and the optimal primal
cost is equal to the optimal dual cost. Furthermore, if the supplies si are
all integer, the optimal primal solution x is integer; if the starting price
of the root node and the cost coefficients aij are all integer, the optimal
dual solution p is integer.

(b) If the problem is unbounded, the method verifies this after a finite num-
ber of iterations.

Sec. 2.2 The Basic Simplex Algorithm 111

Proof: (a) The trees generated by the method are strongly feasible, and by
Prop. 1.2 these trees are all distinct, so the method terminates. Termination
can only occur with either an optimal pair (x, p) or with the indication that
the problem is unbounded. Thus, if the problem is not unbounded, the only
possibility is termination with an optimal pair (x, p). Since upon termination
x and p satisfy complementary slackness, the equality of the optimal primal
and dual values follows from Prop. 2.3 in Section 1.2. Also, if the supplies si

are all integer, from Prop. 1.1 it follows that all basic flow vectors are integer,
including the one obtained at termination. If the starting price of the root
node and the cost coefficients aij are all integer, it can be checked that all
operations of the algorithm maintain the integrality of p.

(b) If the problem is unbounded, there is no optimal primal solution, so the
simplex method cannot terminate with an optimal pair (x, p). The only other
possibility is for the method to terminate with an indication that the problem
is unbounded. Q.E.D.

2.2.2 Choosing the Initial Strongly Feasible Tree – The
Big-M Method

In the absence of an apparent choice for an initial strongly feasible tree, one
may use the so called big-M method . In this method, some artificial variables
are introduced to simplify the choice of an initial basic solution, but the cost
coefficient M for these variables is chosen large enough so that the optimal
solutions of the problem are not affected.

In particular, we modify the problem by introducing an extra node,
labeled 0 and having zero supply s0 = 0, together with a set of artificial arcs
A consisting of an arc (i, 0) for each node i with si > 0, and an arc (0, i) for
each node i with si ≤ 0. The cost coefficient of all these arcs is taken to be
a scalar M , and its choice will be discussed shortly. We thus arrive at the
following problem, referred to as the big-M version of the original problem:

minimize
∑

(i,j)∈A
aijxij + M

⎛
⎝ ∑

(i,0)∈A

xi0 +
∑

(0,i)∈A

x0i

⎞
⎠

subject to ∑
{j|(i,j)∈A∪A}

xij −
∑

{j|(j,i)∈A∪A}

xji = si, ∀ i ∈ N ∪ {0},

0 ≤ xij, ∀ (i, j) ∈ A ∪A.

(2.3)

The artificial arcs constitute a readily available initial spanning tree for
the big-M version; see Fig. 2.1. It can be seen that the corresponding basic

Original Network

Artificial Node 0 0

1
s = 01

2
s = 22

3

s = -13
4

s = 34

5
s = - 45

Artificial Arcs with
Large Cost M

112 Simplex Methods Chap. 2

flow vector is given by

xi0 = si, for each i with si > 0

x0i = −si, for each i with si ≤ 0

xij = 0, ∀ (i, j) ∈ A

and is therefore feasible. Let us choose the root to be the artificial node 0.
The artificial arcs that carry zero flow are then oriented away from the root,
so the tree is strongly feasible.

Figure 2.1 Artificial arcs used to modify the problem so as to facilitate

the choice of an initial strongly feasible tree.

The cost M of the artificial arcs should be taken to be large enough
so that these arcs will carry zero flow at every optimal solution of the big-
M version. In this case, the flows of the nonartificial arcs define an optimal
solution of the original problem. The following proposition quantifies the
appropriate level of M for this to happen, and collects a number of related
facts.

Proposition 2.2: Consider the minimum cost flow problem with nonneg-
ativity constraints (referred to as the original problem), and consider also its
big-M version. Suppose that

2M >
∑

(i,j)∈P+

aij −
∑

(i,j)∈P−
aij (2.4)

Sec. 2.2 The Basic Simplex Algorithm 113

for all simple paths P of the original problem graph.

(a) If the original problem is feasible but not unbounded, the big-M version
has optimal solutions x, and each of these solutions is of the form

xij =
{

xij if (i, j) ∈ A
0 if (i, j) ∈ A,

(2.5)

where x is an optimal solution of the original. Furthermore, every opti-
mal solution x of the original problem gives rise to an optimal solution
x of the big-M version via the preceding relation.

(b) If the original problem is unbounded, the big-M version is also un-
bounded.

(c) If the original problem is infeasible, then in every feasible solution of the
big-M version some artificial arc carries positive flow.

Proof: (a) We first note that the big-M version cannot be unbounded unless
the original problem is. To prove this, we argue by contradiction. If the big-
M version is unbounded and the original problem is not, there would exist
a simple forward cycle with negative cost in the big-M version. This cycle
cannot consist of arcs of A exclusively, since the original is not unbounded.
On the other hand, if the cycle consisted of the arcs (m, 0) and (0, n), and a
simple path of the original graph, then by the condition (2.4) the cycle would
have positive cost, arriving at a contradiction.

Having proved that the big-M version is not unbounded, we now note
that, by Prop. 2.1(a), the simplex method starting with the strongly feasible
tree of all the artificial arcs will terminate with optimal primal and dual
solutions of the big-M version. Thus, optimal solutions of the big-M version
exist, and for every optimal solution x of the form (2.5), the corresponding
vector x = {xij | (i, j) ∈ A} with xij = xij for all (i, j) ∈ A is an optimal
solution of the original problem.

To prove that all optimal solutions x of the big-M version are of the
form (2.5), we argue by contradiction. Suppose that x is an optimal solution
such that some artificial arcs carry positive flow. Let

N+ = {m | sm > 0, xm0 > 0},

N− = {n | sn ≤ 0, x0n > 0}.
We observe that N+ and N− must be nonempty and that there is no unblocked
simple path P with respect to x that starts at some m ∈ N+ and ends at
some n ∈ N−; such a path, together with arcs (m, 0) and (0, n), would form an
unblocked simple cycle, which would have negative cost in view of condition
(2.4). Consider now the flow vector x = {xij | (i, j) ∈ A} with xij = xij for
all (i, j) ∈ A. Then, there is no path with respect to x of the original problem

114 Simplex Methods Chap. 2

graph (N ,A), that is unblocked with respect to x and that starts at a node
of N+ and ends at a node of N−. By using a very similar argument as in the
proof of Prop. 2.2 of Section 1.2, we can show (see Exercise 2.14 in Section
1.2) that there must exist a saturated cut [S,N − S] such that N+ ⊂ S,
N− ⊂ N −S. The capacity of this cut is equal to the sum of the divergences
of the nodes i ∈ S,

∑
i∈S

yi =
∑
i∈S

⎛
⎝ ∑

{j|(i,j)∈A}
xij −

∑
{j|(j,i)∈A}

xji

⎞
⎠ ,

which is also equal to∑
i∈S

(
si − xi0

)
=

∑
i∈S

si −
∑
i∈N+

xi0 <
∑
i∈S

si.

On the other hand, if the original problem is feasible, the capacity of any cut
[S,N − S] cannot be less than

∑
i∈S si, so we obtain a contradiction.

Finally, let x be an optimal solution of the original problem, and let x
be given by Eq. (2.5). We will show that x is optimal for the big-M version.
Indeed, every simple cycle that is unblocked with respect to x in the big-M
version either consists of arcs in A and is therefore unblocked with respect to
x in the original, or else consists of the arcs (m, 0) and (0, n), and a simple
path P that starts at n and ends at m. In the former case, the cost of the
cycle is nonnegative, since x is optimal for the original problem; in the latter
case, the cost of the cycle is positive by condition (2.4) (with the path P being
the reverse of path P). Hence, x is optimal for the big-M version.

(b) Note that every feasible solution x of the original problem defines a feasible
solution x of equal cost in the big-M version via Eq. (2.5). Therefore, if the
cost of the original can be made arbitrarily large negative, the same is true of
the big-M version.

(c) Observe that any feasible solution of the big-M version having zero flow
on the artificial arcs defines a feasible solution x of the original via Eq. (2.5).
Q.E.D.

Note that to satisfy the condition (2.4), it is sufficient to take

M >
(N − 1)C

2
,

where C is the arc cost range C = max(i,j)∈A |aij |. Note also that if M does
not satisfy the condition (2.4), then the big-M version may be unbounded,
even if the original problem has an optimal solution (Exercise 2.2). Many
practical simplex codes use an adaptive strategy for selecting M , whereby a

Sec. 2.2 The Basic Simplex Algorithm 115

moderate value of M is used initially, and this value is gradually increased if
positive flows on the artificial arcs persist.

By combining the results of the preceding two propositions, we obtain
the following proposition.

Proposition 2.3: Assume that the minimum cost flow problem with non-
negativity constraints is feasible and is not unbounded. Then there exists an
optimal primal solution and an optimal dual solution, and the optimal primal
cost is equal to the optimal dual cost. Furthermore, if the supplies si are all
integer, there exists an optimal primal solution which is integer; if the cost
coefficients aij are all integer, there exists an optimal dual solution which is
integer.

Proof: Apply the simplex method to the big-M version with the initial
strongly feasible tree of all the artificial arcs, and with M sufficiently large
to satisfy condition (2.4). Then, by Prop. 2.2, the big-M version has optimal
solutions, so by Prop. 2.1 the simplex method will provide an optimal pair
(x, p), with x integer if the supplies are integer, and p integer if the cost
coefficients are integer. By Prop. 2.2, the vector x defined by xij = xij , for
all (i, j) ∈ A will be an optimal solution of the original problem, while the
price vector p defined by pi = pi, for all i ∈ N will satisfy the CS conditions
together with x. Hence, p will be an optimal dual solution. Q.E.D.

A Shortest Path Example

Consider a single origin/all destinations shortest path problem involving the
graph of Fig. 2.2. We will use this example to illustrate the simplex method
and some of its special properties when applied to shortest path problems.
The corresponding minimum cost flow problem is

minimize
∑

(i,j)∈A
aijxij

subject to ∑
{j|(1,j)∈A}

x1j −
∑

{j|(j,1)∈A}
xj1 = 3,

∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = −1, i = 2, 3, 4,

0 ≤ xij, ∀ (i, j) ∈ A.

We select as root the origin node 1. To deal with the problem of the
initial choice of a strongly feasible tree, we use a variant of the big-M method.
We introduce artificial arcs connecting the origin with each node i �= 1 with
very large cost M , and we use as an initial tree the set of artificial arcs with

3

1

3

3

1

1

1

11 4

3

2

1

1

116 Simplex Methods Chap. 2

Figure 2.2 Example single origin/all destinations shortest path problem.

The arc lengths are shown next to the arcs.

root node the origin (with this choice, there will be two arcs connecting the
origin with each of its neighbors, but this should not cause any confusion).
In the corresponding flow vector, every artificial arc carries unit flow, so the
initial tree is strongly feasible (all arcs are oriented away from the root).

The corresponding price vector is (0,−M,−M,−M) and the associated
reduced costs of the nonartificial arcs are

r1j = a1j − M, ∀ (1, j) ∈ A,

rij = aij, ∀ (i, j) ∈ A, i �= 1, j �= 1.

One possible outcome of the first iteration is to select some arc (1, j) ∈ A as in-
arc, and to select the artificial arc connecting 1 and j as out-arc. The process
will then be continued, first obtaining the flow and price vectors corresponding
to the new tree, then obtaining the out-arc, then the in-arc, etc.

Figures 2.3 and 2.4 show two possible sequences of pivots. The following
can be noted:

(a) Each artificial arc eventually becomes the out-arc but never becomes the
in-arc.

(b) In all trees, all the arcs are oriented away from the origin and carry unit
flow.

(c) In Fig. 2.3, where the in-arc is selected to be the arc with minimum
reduced cost, there are exactly N − 1 (= 3) pivots, and each time the
out-arc is an artificial arc. In fact, in this case the simplex method works
exactly like Dijkstra’s method, permanently setting the label of one ad-
ditional node with every pivot; here, node labels should be identified
with the negative of node prices.

Final Tree

2nd Pivot1st Pivot

1

2

3

4

p = 0

p = -M

p = -1

1

2

3

p = -M4

Out - Arc

In - Arc

32
r = 2 - M

Out - Arc

In - Arc

Root

r = 1 - M
13

1

2

3

4

p = 0

p = -M

p = -M

1

2

3

p = -M4

3rd Pivot

p = -22

Out - Arc

In - Arc

24
r = 3 - M

1

2

3

4

p = 0

p = -1

1

3

p = -M4

p = -22

1

2

3

4

p = -1

p = 01

3

p = -34

Sec. 2.2 The Basic Simplex Algorithm 117

Figure 2.3 A possible sequence of pivots for the simplex method. The

initial tree consists of the artificial arcs (1, 2), (1, 3), and (1, 4), each carrying one

unit of flow. The in-arc is selected to be the arc with minimum reduced cost and

the method behaves like Dijkstra’s method, requiring only three (= N −1) pivots.

It can be shown that observations (a) and (b) above hold in general for
the simplex method applied to feasible shortest path problems, and observa-
tion (c) also holds in general provided aij ≥ 0 for all arcs (i, j). The proof of
this is left as Exercise 2.8 for the reader.

The simplex method can also be used effectively to solve the all-pairs
shortest path problem. In particular, one may first use the simplex method
to solve the shortest path problem for a single origin, say node 1, and then
modify the final tree T1 to obtain an initial tree T2 for applying the simplex
method with another origin, say node 2. This can be done by deleting the
unique arc of T1 that is incoming to node 2, and replacing it with an artificial
arc from 2 to 1 that has a very large cost; see Fig. 2.5.

2nd Pivot1st Pivot

3rd Pivot 4th Pivot
(Final)

Out - Arc

In - Arc

Root

r = 1 - M
13

1

2

3

4

p = 0

p = -M

p = -1

1

2

3

p = -M4

p = -3
2

In - Arc

Out - Arc
1

2

3

4

p = -1

p = 01

3

p = -M4

p = -32

p = -44

1

2

3

4

p = 0

p = -1

1

3

Out - Arc

In - Arc

1

2

3

4

p = 01

p = -M2

p = -13

p = -M4

Out - Arc

In - Arc

118 Simplex Methods Chap. 2

Figure 2.4 Another possible sequence of pivots for the simplex method.

More than three pivots are required, in contrast with the sequence of Fig. 2.3.

E X E R C I S E S

Exercise 2.1

Use the simplex method with the big-M initialization to solve the problem in

Fig. 2.6.

Exercise 2.2

Construct an example where M does not satisfy the condition (2.4), and

the original problem has an optimal solution, while the big-M version is un-

bounded. Hint: It is sufficient to consider a graph with two nodes.

Exercise 2.3

Construct an example where M satisfies the condition (2.4), and the original

problem is infeasible, while the big-M version is unbounded. Hint: Consider

2Tree T
Rooted at 2

1

2

Artificial Arc with
Large Length

Tree T
Rooted at 1

1

1

2

Cost shown next to each arc.
Supply or demand shown
next to each node.

5

2

6

2

-2

3 3

2

01

2

1

2

1 4

3

2

5

0

Sec. 2.2 The Basic Simplex Algorithm 119

Figure 2.5 Obtaining an initial tree T2 for the simplex method applied

to the shortest path problem with origin 2, from the final tree T1 of the simplex

method applied for origin 1. We delete the unique arc of T1 that is incoming to

node 2, and replace it with an artificial arc from 2 to 1 that has a very large

length.

Figure 2.6 Minimum cost flow problem with nonnegativity constraints for

Exercise 2.1.

problems that are infeasible and also contain a simple forward cycle of negative

cost.

Exercise 2.4 (An Example of Cycling [Chv83])

Consider an assignment problem with sources 1, 2, 3, 4 and sinks 5, 6, 7,

8. There is an arc between each source and each sink. The arc costs are as

follows:

a16 = a17 = a25 = a27 = a35 = a36 = a48 = 1, aij = 0 otherwise.

120 Simplex Methods Chap. 2

Let the initial feasible tree consist of arcs (1,5), (1,6), (2,6), (2,8), (4,8), (4,7),

(3,7), with corresponding arc flows

x15 = x26 = x37 = x48 = 1, xij = 0 otherwise.

Suppose that the simplex method is applied without restriction on the choice

of the out-arc (so the generated trees need not be strongly feasible). Verify

that one possible sequence of in-arc/out-arc pairs is given by(
(1, 8), (2, 8)

)
,
(
(3, 6), (1, 6)

)
,
(
(4, 6), (4, 7)

)
,(

(3, 5), (3, 6)
)
,
(
(3, 8), (1, 8)

)
,
(
(2, 5), (3, 5)

)
,(

(4, 5), (4, 6)
)
,
(
(2, 7), (2, 5)

)
,
(
(2, 8), (3, 8)

)
,(

(1, 7), (2, 7)
)
,
(
(4, 7), (4, 5)

)
,
(
(1, 6), (1, 7)

)
,

and that after these twelve pivots we obtain the initial tree again.

Exercise 2.5 (Birchoff’s Theorem for Doubly Stochastic Matrices)

A doubly stochastic n×n matrix X = {xij} is a matrix such that the elements

of each of its rows and columns are nonnegative, and add to one, that is,

xij ≥ 0 for all i and j,
∑n

j=1 xij = 1 for all i, and
∑n

i=1 xij = 1 for all j. A

permutation matrix is a doubly stochastic matrix whose elements are either

one or zero, so that there is a single one in each row and each column, with

all other elements being zero.

(a) Show that given a doubly stochastic matrix X, there exists a permuta-

tion matrix X∗ such that, for all i and j, if x∗
ij = 1, then xij > 0. Hint:

View X as a feasible solution of the minimum cost flow version of an

assignment problem, and view X∗ as a feasible assignment.

(b) Use part (a) to show constructively that every doubly stochastic matrix

X can be written as
∑k

i=1 γiX
∗
i , where X∗

i are permutation matrices and

γi ≥ 0,
∑k

i=1 γi = 1. Hint: Define a sequence of matrices X0, X1, . . . , Xk,

which are nonnegative multiples of doubly stochastic matrices, such that

X0 = X, Xk = 0, and for all i, Xi − Xi+1 is a positive multiple of a

permutation matrix.

Exercise 2.6 (Hall’s Theorem for Perfect Matrices)

A perfect matrix is a matrix with nonnegative integer elements such that the

elements of each of its rows and each of its columns add to the same integer k.

Show that such a perfect matrix can be written as the sum of k permutation

matrices. Hint: Use the hints and constructions of the preceding exercise.

Sec. 2.3 Extension to the Problem with Upper and Lower Bounds 121

Exercise 2.7 (Dual Feasibility Theorem)

Show that the dual problem is feasible, that is, there exists a price vector p

with

pi − pj ≤ aij , ∀ (i, j) ∈ A

if and only if all forward cycles have nonnegative cost. Hint: Assume without

loss of generality that the primal is feasible (take si = 0 if necessary), and

note that all forward cycles have nonnegative cost if and only if the primal

problem is not unbounded (see the discussion near the beginning of Section

2.1).

Exercise 2.8 (Relation of Dijkstra and Simplex for Shortest Paths)

Consider the single origin/all destinations shortest path problem

minimize
∑

(i,j)∈A

aijxij

subject to ∑
{j|(1,j)∈A}

x1j −
∑

{j|(j,1)∈A}

xj1 = N − 1,

∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}

xji = −1, ∀ i �= 1,

0 ≤ xij , ∀ (i, j) ∈ A.

Introduce an artificial arc (1, i) for all i �= 1 with very large cost M , and

consider the simplex method starting with the strongly feasible tree of artificial

arcs. Let the origin node 1 be the root node.

(a) Show that all the arcs of the trees generated by the simplex method are

oriented away from the origin and carry unit flow.

(b) How can a negative length cycle be detected with the simplex method?

(c) Assume that aij ≥ 0 for all (i, j) ∈ A and suppose that the in-arc is

selected to have minimum reduced cost out of all arcs that are not in

the tree. Use induction to show that after the kth pivot the tree consists

of a shortest path tree from node 1 to the k closest nodes to node 1,

together with the artificial arcs (1, i) for all i that are not among the

k closest nodes to node 1. Prove then that this implementation of the

simplex method is equivalent to Dijkstra’s method.

122 Simplex Methods Chap. 2

2.3 EXTENSION TO THE PROBLEM WITH UPPER AND LOWER
BOUNDS

We now consider the extension of the simplex method of the previous section
to the general minimum cost flow problem

minimize
∑

(i,j)∈A
aijxij (MCF)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N , (3.1)

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A. (3.2)

To simplify the presentation, we assume that bij < cij for all arcs (i, j); any
arc (i, j) with bij = cij can be eliminated, and its flow, which is equal to the
common bound, can be incorporated into the supplies si and sj . A nice aspect
of this problem is that we need not worry about unboundedness, since all arc
flows are constrained to lie in a bounded interval.

The extension of the simplex method to the problem with upper and
lower bounds is straightforward, and we will simply state the algorithm and
the corresponding results without much elaboration. In fact, one may derive
the simplex method for this problem by converting it to the minimum cost flow
problem with nonnegativity constraints (cf. Fig. 1.7 in Section 1.1.3), applying
the simplex method of the preceding section, and appropriately streamlining
the computations. We leave the verification of this as Exercise 3.2 for the
reader.

The method uses at each iteration a spanning tree T . Only arcs of T
can have flows that are neither at the upper bound nor at the lower bound.
However, to uniquely associate a basic flow vector with T , we must also specify
for each arc (i, j) /∈ T whether xij = bij or xij = cij . Thus, the simplex method
maintains a triplet

(T, L, U),

where

T is a spanning tree.

L is the set of arcs (i, j) /∈ T with xij = bij .

U is the set of arcs (i, j) /∈ T with xij = cij .

Such a triplet will be called a basis. It uniquely specifies a flow vector x,
called the basic flow vector corresponding to (T, L, U). In particular, if the

Sec. 2.3 Extension to the Problem with Upper and Lower Bounds 123

arc (i, j) belongs to T and separates T into the subtrees Ti and Tj , we have

xij =
∑
n∈Ti

sn −
∑

{(m,n)∈L|m∈Ti,n∈Tj}
bmn −

∑
{(m,n)∈U |m∈Ti,n∈Tj}

cmn

+
∑

{(m,n)∈L|m∈Tj ,n∈Ti}
bmn +

∑
{(m,n)∈U |m∈Tj ,n∈Ti}

cmn.

If x is feasible, then the basis (T, L, U) is called feasible.
Similar to the previous section, we fix a root node r throughout the

algorithm. A basis (T, L, U) specifies a price vector p using the same formula
as in the previous section:

pi = pr −
∑

(m,n)∈P+
i

amn +
∑

(m,n)∈P−
i

amn, ∀ i ∈ N ,

where Pi is the unique simple path of T starting at the root node r and
ending at i, and P+

i and P−
i are the sets of forward and backward arcs of Pi,

respectively.
We say that the feasible basis (T, L, U) is strongly feasible if all arcs

(i, j) ∈ T with xij = bij are oriented away from the root and if all arcs
(i, j) ∈ T with xij = cij are oriented toward the root (that is, the unique
simple path from the root to i passes through j).

Given the strongly feasible basis (T, L, U) with a corresponding flow
vector x and price vector p, an iteration of the simplex method produces
another strongly feasible basis (T , L, U) as follows.

Typical Simplex Iteration

Find an in-arc e = (i, j) /∈ T such that either

rij < 0 if e ∈ L

or

rij > 0 if e ∈ U.

(If no such arc can be found, x is primal-optimal and p is dual-optimal.) Let

C be the cycle closed by T and e. Define the forward direction of C to be the

same as the one of e if e ∈ L and opposite to e if e ∈ U (that is, e ∈ C+ if

e ∈ L and e ∈ C− if e ∈ U). Also let

δ = min

{
min

(i,j)∈C−
{xij − bij}, min

(i,j)∈C+
{cij − xij}

}
,

and let Ĉ be the set of arcs where this minimum is obtained:

Ĉ =
{
(i, j) ∈ C− | xij − bij = δ

}
∪

{
(i, j) ∈ C+ | cij − xij = δ

}
.

124 Simplex Methods Chap. 2

Define the join of C as the first node of C that lies on the unique simple path

of T that starts from the root and ends at i. Select as out-arc the arc e of

Ĉ that is encountered first as C is traversed in the forward direction starting

from the join node. The new tree is T = T + e − e, and the corresponding

flow vector x is obtained from x by

xij =

{
xij if (i, j) /∈ C

xij + δ if (i, j) ∈ C+

xij − δ if (i, j) ∈ C−.

Note that it is possible that the in-arc is the same as the out-arc, in
which case T is unchanged. In this case, the flow of this arc will simply move
from one bound to the other, affecting the sets L and U , and thus affecting
the basis. The proofs of the preceding section can be modified to show that
the algorithm maintains a strongly feasible tree.

The following proposition admits a very similar proof of Prop. 2.1.

Proposition 3.1: Assume that the minimum cost flow problem (MCF) is
feasible. The simplex method starting from a strongly feasible tree terminates
with an optimal primal solution x and an optimal dual solution p. Further-
more, the optimal primal cost is equal to the optimal dual cost. If the supplies
si and the flow bounds bij , cij are all integer, the optimal primal solution x is
integer; if the starting price of the root node and the cost coefficients aij are
all integer, the optimal dual solution p is integer.

If an initial strongly feasible tree is not readily available, we can solve
instead a big-M version of the problem with suitably large value of M . This
problem is

minimize
∑

(i,j)∈A
aijxij + M

⎛
⎝ ∑

(i,0)∈A

xi0 +
∑

(0,i)∈A

x0i

⎞
⎠

subject to ∑
{j|(i,j)∈A∪A}

xij −
∑

{j|(j,i)∈A∪A}

xji = si, ∀ i ∈ N ∪ {0},

bij ≤ xij ≤ cij , ∀ (i, j) ∈ A,

0 ≤ xi0 ≤ si, ∀ i with si > 0,

0 ≤ x0i ≤ si, ∀ i with si ≤ 0,

where
si = si −

∑
{j|(i,j)∈A}

bij +
∑

{j|(j,i)∈A}
bji,

Sec. 2.4 Implementation Issues 125

si = −si +
∑

{j|(i,j)∈A}
bij −

∑
{j|(j,i)∈A}

bji.

The initial strongly feasible tree consists of the artificial arcs. The correspond-
ing basic flow vector x is given by xij = bij for all (i, j) ∈ A, xi0 = si, for all i
with si > 0, and x0i = −si, for all i with si ≤ 0.

Similar to the case of the problem with nonnegativity constraints, we
obtain the following.

Proposition 3.2: If the minimum cost flow problem (MCF) is feasible,
then it has at least one optimal solution, and its dual problem also has at least
one optimal solution. Furthermore, if the supplies si and the flow bounds bij ,
cij are all integer, there exists an optimal primal solution which is integer; if
the cost coefficients aij are all integer, there exists an optimal dual solution
which is integer.

E X E R C I S E S

Exercise 3.1

Use the simplex method to solve the minimum cost flow problem with the

data of Fig. 2.6, and with the arc flow bounds 0 ≤ xij ≤ 1 for all (i, j) ∈ A.

Exercise 3.2

Suppose that the problem of this section is transformed to a minimum cost

flow problem with nonnegativity constraints as in Fig. 1.7 of Section 1.1.3.

Show that the simplex method of the previous section, when applied to the

latter problem, is equivalent to the simplex method of the present section. In

particular, relate feasible trees, basic flow vectors, and price vectors generated

by the two methods, and show that they are in one-to-one correspondence.

2.4 IMPLEMENTATION ISSUES

To implement a network optimization algorithm efficiently it is essential to
exploit the graph nature of the problem using appropriate data structures.
There are two main issues here:

(a) Representing the problem in a way that facilitates the application of the
algorithm.

126 Simplex Methods Chap. 2

(b) Using additional data structures that are well suited to the operations
of the algorithm.

For simplex methods, the appropriate representations of the problem
tend to be quite simple. However, additional fairly complex data structures
are needed to implement efficiently the various operations related to flow
and price computation, and tree manipulation. This is quite contrary to the
situation with the methods that will be discussed in the next two chapters,
where the appropriate problem representations are quite complex but the
additional data structures are simple.

Problem Representation for Simplex Methods

For concreteness, consider the following problem with zero lower flow bounds

minimize
∑

(i,j)∈A
aijxij (4.1)

subject to ∑
{j|(i,j)∈A}

xij −
∑

{j|(j,i)∈A}
xji = si, ∀ i ∈ N ,

0 ≤ xij ≤ cij , ∀ (i, j) ∈ A.

This has become the standard form for commonly available minimum cost
flow codes. As was mentioned in Section 1.1.3, a problem with nonzero lower
arc flow bounds bij can be converted to one with nonnegativity constraints by
using a flow translation (replacing xij by xij − bij and appropriately adjusting
cij , si, and sj).

One way to represent this problem, which is the most common in simplex
codes, is to use four arrays of length A and one array of length N :

START (a): The start node of arc a.

END(a): The end node of arc a.

COST (a): The cost coefficient of arc a.

CAPACITY (a): The upper flow bound of arc a.

SUPPLY (i): The supply of node i.

Figure 4.1 gives an example of a problem represented in this way.
An alternative representation is to store the costs aij and the upper flow

bounds cij in two-dimensional N ×N arrays (or in one-dimensional arrays of
length N 2, with the elements of each row stored contiguously). This wastes
memory and requires a lot of extra overhead when the problem is sparse
(A << N 2), but it may be a good choice for dense problems since it avoids
the storage of the start and end nodes of each arc.

5/2

2/3

4/2

0/1

2/1
3/1 -5/10

-2/10

Cost/Capacity shown
next to each arc

0/5 11

2

2

1 4

3

2

5

0

Sec. 2.4 Implementation Issues 127

ARC START END COST CAPACITY

1 1 2 5 2

2 1 3 0 1

3 2 3 4 2

4 3 2 3 1

5 2 5 -2 10

6 2 4 2 1

7 3 4 2 3

8 5 4 0 5

9 4 5 -5 10

NODE SUPPLY

1 1

2 2

3 -2

4 0

5 -1

Figure 4.1 Representation of a minimum cost flow problem in terms of

the five arrays START , END , COST , CAPACITY , and SUPPLY .

128 Simplex Methods Chap. 2

Data Structures for Tree Operations

Taking a closer look at the operations of the simplex method, we see that the
main computational steps at each iteration are the following:

(a) Finding an in-arc with negative reduced cost.

(b) Identifying the cycle formed by the current tree and the in-arc.

(c) Modifying the flows along the cycle and obtaining the out-arc.

(d) Recalculating the node prices.

As mentioned in Section 2.1.1, most codes maintain a candidate list, that
is, a subset of arcs with negative reduced cost; the arc with most negative
reduced cost from this list is selected as the in-arc at each iteration. The
maximum size of the candidate list is set at some reasonable level (chosen
heuristically), thereby avoiding a costly search and comparison of the reduced
costs of all the arcs.

To identify the cycle and the associated flow increment at each iteration,
simplex codes commonly use the following two arrays of length N :

(a) PRED(i): The arc preceding node i on the unique path from the root
to i on the current tree, together with an indication (such as a plus or a
minus sign) of whether this is an incoming or outgoing arc of i.

(b) DEPTH (i): The number of arcs of the unique path from the root to i
on the current tree.

The PRED array (together with the START and END arrays) is sufficient
both to represent the current tree and to construct the unique path on the
tree from any node i to any other node j. (Construct the paths from i to
the root and from j to the root, and subtract out the common portion of
these paths.) In particular, if (i, j) is the in-arc, the cycle formed by (i, j) and
the current tree could be obtained by finding the path joining i and j in this
way. By using the DEPTH array, however, the cycle can be constructed more
quickly without having to go from i to j all the way to the root. In particular,
one can start constructing the paths from i and j to the root simultaneously,
adding a new node to the path whose current end node has greater DEPTH
(ties are broken arbitrarily). The join of the cycle can then be identified as
the first encountered common node in the two paths. The following procedure
starting with the in-arc (i, j) accomplishes this. In this procedure, i and j
represent successive nodes of the paths starting at i and j, respectively, and
ending at the join of the cycle.

Identifying the Join of the Cycle Corresponding to the In-Arc (i, j)

Set i = i, j = j.

Sec. 2.5 Notes and Sources 129

Step 1: If DEPTH (i) ≥ DEPTH (j), go to Step 2; else go to Step 3.

Step 2: Set i := START (PRED(i)) if PRED(i) is an incoming arc to i, and

set i := END(PRED(i)) if PRED(i) is an outgoing arc from i. Go to Step 4.

Step 3: Set j := START (PRED(j)) if PRED(j) is an incoming arc to j, and

set i := END(PRED(j)) if PRED(j) is an outgoing arc from j. Go to Step 4.

Step 4: If i = j, terminate; i is the join of the cycle corresponding to the

in-arc (i, j). Else go to Step 1.

The cycle corresponding to the in-arc consists of the arcs PRED(i) and
PRED(j) encountered during this procedure. With a simple modification of
the procedure, we can simultaneously obtain the out-arc and calculate the flow
increment. With little additional work, we can also change the flow along the
cycle and update the PRED and DEPTH arrays consistently with the new
tree.

We must still provide for a mechanism to calculate efficiently the prices
corresponding to a given tree. This can be done iteratively, using the prices
of the preceding tree as shown in Section 1.1; cf. Eqs. (1.11) and (1.12). To
apply these equations, it is necessary to change the prices of the descendants
of the endnode of the out-arc that has the larger value of DEPTH ; cf. Fig. 4.2.
Thus, it is sufficient to be able to calculate the descendants of a given node i
in the current tree (the nodes whose unique path to the root passes through
i). For this it is convenient to use one more array, called THREAD . It defines
a traversal order of the nodes of the tree in depth-first fashion. To understand
this order, it is useful to think of the tree laid out in a plane, and to consider
visiting all nodes starting from the root, and going “top to bottom” and “left
to right”. An example is given in Fig. 4.3. It can be seen that every node
i appears in the traversal order immediately before all of its descendants.
Hence the descendants of i are all the nodes immediately following node i in
the traversal order up to the first node j with DEPTH (j) ≤ DEPTH (i). The
array THREAD encodes the traversal order by storing in THREAD(i) the
node following node i; cf. Fig. 4.3. An important fact is that when the tree
changes, the THREAD array can be updated quite efficiently [with O(N)
operations]. The details, however, are too tedious and complicated to be
included here; for a clear presentation, see [Chv83], p. 314.

2.5 NOTES AND SOURCES

2.1. The first specialized version of the simplex method for the transporta-
tion problem problem was given in [Dan51]. This method was also described
and extended to the minimum cost flow problem in [Dan63]. A general pri-
mal cost improvement algorithm involving flow changes along negative cost

i

j Out - Arc (i,j)

Subtree of
Descendants of i

Root

130 Simplex Methods Chap. 2

Figure 4.2 The two subtrees obtained when the out-arc is deleted from

the current tree. The subtree containing the endnode of the out-arc with larger

DEPTH (node i in the example of the figure) consists of all the descendants of

that endnode.

cycles was given in [Kle67]. Strongly feasible trees and their use in resolving
degeneracy were introduced in [Cun76].

The subject of pivot selection has received considerable attention in the
literature. Examples of poor performance of the simplex method are given
in [Zad73a] and [Zad73b]. The performance of various pivot rules was stud-
ied empirically in [GSS77], [GoR77], [BBG77], [BGK77], [BGK78], [Mul78a],
[Mul78b], and [GGK83]. Generally, even with the use of strongly feasible
trees, it is possible that the number of successive degenerate pivots is not
polynomial. Pivot rules with guaranteed polynomial upper bounds on the
lengths of sequences of degenerate pivots are given in [Cun79] and [GHK87].
One of the simplest such rules maintains a strongly feasible tree and operates
as follows: if the in-arc at some iteration has start node i, the in-arc at the
next iteration must be the outgoing arc from node (i+k) modulo N that has
minimum reduced cost, where k is the smallest nonnegative integer such that
node (i + k) modulo N has at least one outgoing arc with negative reduced
cost. For a textbook discussion of a variety of pivot rules under which the
simplex method has polynomial running time, see [BJS90].

2.3. Specialized simplex methods have been developed for the assignment
problem; see [BGK77], [Hun83], [Akg86], [Bal85], [Gol85a], [Bal86]. For anal-
ysis and application of simplex methods in shortest path and max-flow prob-
lems, see [FuD55], [FNP81], [GKM84], [GHK86], and [GoH88].

Root3

7

9

10

11

12 1314

1

2

45

6

7

8

Traversal Order: 3, 2, 1, 5, 4, 6, 9, 8, 7, 14, 11, 12, 13, 10

Sec. 2.5 Notes and Sources 131

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

THREAD(i) 5 1 2 6 4 9 14 7 8 0 12 13 10 11

Figure 4.3 Illustration of the THREAD array, which defines a depth-first

traversal order of the nodes in the tree. Given the set S of already traversed

nodes, the next node traversed is an immediate descendant of one of the nodes in

S, which has maximum value of DEPTH . For each node i, THREAD(i) defines

the successor of node i in this order (for the last node, THREAD is equal to 0).

2.4. The development of good implementation techniques played a crucial
role in the efficient use of the simplex method. Important contributions in this
area include [Joh66], [SrT73], [GKK74a], [GKK74b], [BBG77], and [BGK79].
Textbook presentations of these techniques that supplement ours are given in
[KeH80], [Chv83], and [BJS90].

